Social Choice Theory

- Mathematical **theory** dealing with **aggregation** of preferences.
- Founded by Condorcet, Borda (1700’s) and Dodgson (1800’s).
- Axiomatic framework and impossibility result by Arrow (1951).
Social Choice and Voting

Social Choice Theory
- Mathematical **theory** dealing with **aggregation** of preferences.
- Founded by Condorcet, Borda (1700’s) and Dodgson (1800’s).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting
- Set A, $|A| = m$, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent i has a (private) **linear order** $\succ_i \in L$ over alternatives A.

Dimitris Fotakis
Approximate Mechanism Design without Money
Social Choice Theory

- Mathematical **theory** dealing with **aggregation** of preferences.
- Founded by Condorcet, Borda (1700’s) and Dodgson (1800’s).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting

- Set A, $|A| = m$, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent i has a (private) **linear order** $\succ_i \in L$ over alternatives A.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \rightarrow A$ mapping the agents’ preferences to an alternative.
Social Choice and Voting

Social Choice Theory

- Mathematical **theory** dealing with **aggregation** of preferences.
- Founded by Condorcet, Borda (1700’s) and Dodgson (1800’s).
- Axiomatic framework and impossibility result by Arrow (1951).
- Collective decision making, by **voting**, over anything:
 - Political representatives, award nominees, contest winners, allocation of tasks/resources, joint plans, meetings, food, …
 - Web-page ranking, preferences in multiagent systems.

Formal Setting

- Set A, $|A| = m$, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent i has a (private) **linear order** $\succ_i \in L$ over alternatives A.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \rightarrow A$ mapping the agents’ preferences to an alternative.
Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- **12 boys**: Green \succ Red \succ Pink
- **10 boys**: Red \succ Green \succ Pink
- **3 girls**: Pink \succ Red \succ Green
Preferences of the founders about the colors of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating $(2, 1, 0)$.

Outcome should have been Red \succ Green \succ Pink. Instead, the outcome was Pink \succ Green \succ Red.
Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating $(2, 1, 0)$.
Outcome should have been Red$(35) \succ$ Green$(34) \succ$ Pink(6)
Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating $(2,1,0)$.
Outcome should have been Red$(35) \succ$ Green$(34) \succ$ Pink(6)

Instead, the outcome was Pink$(28) \succ$ Green$(24) \succ$ Red(23)
Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- 12 boys: **Green** \succ **Red** \succ **Pink**
- 10 boys: **Red** \succ **Green** \succ **Pink**
- 3 girls: **Pink** \succ **Red** \succ **Green**

Voting rule allocating $(2, 1, 0)$.
Outcome should have been **Red**$(35) \succ$ **Green**$(34) \succ$ **Pink**(6)
Instead, the outcome was **Pink**$(28) \succ$ **Green**$(24) \succ$ **Red**(23)

- 12 boys voted for: **Green** \succ **Pink** \succ **Red**
- 10 boys voted for: **Red** \succ **Pink** \succ **Green**
- 3 girls voted for: **Pink** \succ **Red** \succ **Green**
An Example

Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- 12 boys: Green ≻ Red ≻ Pink
- 10 boys: Red ≻ Green ≻ Pink
- 3 girls: Pink ≻ Red ≻ Green

Voting rule allocating \((2, 1, 0)\).
Outcome should have been Red\((35) \succ Green\((34) \succ Pink\((6)\)
Instead, the outcome was Pink\((28) \succ Green\((24) \succ Red\((23)\)

- 12 boys voted for: Green ≻ Pink ≻ Red
- 10 boys voted for: Red ≻ Pink ≻ Green
- 3 girls voted for: Pink ≻ Red ≻ Green

With plurality voting \((1, 0, 0)\): Green\((12) \succ Red\((10) \succ Pink\((3)\)
Colors of the Local Football Club?

Preferences of the founders about the colors of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating $(2, 1, 0)$.

Outcome should have been Red$(35) \succ$ Green$(34) \succ$ Pink(6)

Instead, the outcome was Pink$(28) \succ$ Green$(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: Pink \succ Red \succ Green

With **plurality** voting $(1, 0, 0)$: Green$(12) \succ$ Red$(10) \succ$ Pink(3)

Probably it would have been Red$(13) \succ$ Green$(12) \succ$ Pink(0)
Positional Scoring Voting Rules

- Vector \((a_1, \ldots, a_m)\), \(a_1 \geq \cdots \geq a_m \geq 0\), of **points** allocated to each **position** in the preference list.

- **Winner** is the alternative getting **most points**.
<table>
<thead>
<tr>
<th>Title:</th>
<th>A Class of Voting Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positional Scoring Voting Rules</td>
<td></td>
</tr>
<tr>
<td>Vector $(a_1, \ldots, a_m), a_1 \geq \cdots \geq a_m \geq 0$, of points allocated to each position in the preference list.</td>
<td></td>
</tr>
<tr>
<td>Winner is the alternative getting most points.</td>
<td></td>
</tr>
<tr>
<td>Plurality is defined by $(1, 0, \ldots, 0)$.</td>
<td></td>
</tr>
<tr>
<td>Extensively used in elections of political representatives.</td>
<td></td>
</tr>
</tbody>
</table>
A Class of Voting Rules

Positional Scoring Voting Rules

- Vector \((a_1, \ldots, a_m)\), \(a_1 \geq \cdots \geq a_m \geq 0\), of points allocated to each position in the preference list.
- **Winner** is the alternative getting most points.
- **Plurality** is defined by \((1, 0, \ldots, 0)\).
 - Extensively used in elections of political representatives.

Borda Count (1770): \((m - 1, m - 2, \ldots, 1, 0)\)

“Intended only for honest men.”
A Class of Voting Rules

Positional Scoring Voting Rules

- Vector \((a_1, \ldots, a_m)\), \(a_1 \geq \cdots \geq a_m \geq 0\), of points allocated to each position in the preference list.
- **Winner** is the alternative getting **most points**.
- **Plurality** is defined by \((1, 0, \ldots, 0)\).
 - Extensively used in elections of political representatives.

Borda Count (1770): \((m-1, m-2, \ldots, 1, 0)\)

“Intended only for honest men.”
Condorcet Winner

- **Winner** is the alternative **beating every other** alternative in pairwise election.
Condorcet Winner

- **Winner** is the alternative **beating every other** alternative in pairwise election.
 1. 12 boys: Green \succ Red \succ Pink
 2. 10 boys: Red \succ Green \succ Pink
 3. 3 girls: Pink \succ Red \succ Green

- (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)

Condorcet paradox: Condorcet winner may not exist.

- $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$ (a, b):
 1. (2, 1)
 2. (a, c):
 3. (b, c):

Condorcet criterion: select the Condorcet winner, if exists.

- Plurality satisfies the Condorcet criterion?
- Borda count?

“Approximation” of the Condorcet winner: Dodgson (NP-hard to approximate!), Copeland, MiniMax, ...
Condorcet Winner

- **Winner** is the alternative **beating every other** alternative in pairwise election.
 - 12 boys: Green > Red > Pink
 - 10 boys: Red > Green > Pink
 - 3 girls: Pink > Red > Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- **Condorcet paradox**: Condorcet winner may **not exist**.
 - a > b > c, b > c > a, c > a > b
 - (a, b): (2, 1), (a, c): (1, 2), (b, c): (2, 1)
Condorcet Winner

- **Winner** is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green \succ Red \succ Pink
 - 10 boys: Red \succ Green \succ Pink
 - 3 girls: Pink \succ Red \succ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)

- **Condorcet paradox**: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - $(a, b): (2, 1), (a, c): (1, 2), (b, c): (2, 1)$

- **Condorcet criterion**: select the Condorcet winner, if exists.
 - Plurality satisfies the Condorcet criterion? Borda count?
Condorcet Winner

- **Winner** is the alternative **beating every other** alternative in pairwise election.
 - 12 boys: Green \(\succ\) Red \(\succ\) Pink
 - 10 boys: Red \(\succ\) Green \(\succ\) Pink
 - 3 girls: Pink \(\succ\) Red \(\succ\) Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)

- **Condorcet paradox**: Condorcet winner may **not exist**.
 - \(a \succ b \succ c, b \succ c \succ a, c \succ a \succ b\)
 - \((a, b): (2, 1), (a, c): (1, 2), (b, c): (2, 1)\)

- **Condorcet criterion**: select the Condorcet winner, if exists.
 - **Plurality** satisfies the **Condorcet criterion**? **Borda count**?

- “Approximation” of the Condorcet winner: **Dodgson** (NP-hard to approximate!), **Copeland**, **MiniMax**, ...
Social Choice

Setting
- Set A of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent i has a (private) **linear order** $\succ_i \in L$ over alternatives A.

Social choice function (or **mechanism**) $F : L^n \rightarrow A$ mapping the agents’ preferences to an alternative.
Social Choice

Setting

- Set A of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent i has a (private) **linear order** $\succ_i \in L$ over alternatives A.

Social choice function (or **mechanism**) $F : L^n \rightarrow A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- **Onto**: Range is A.
- **Unanimous**: If a is the top alternative in all \succ_1, \ldots, \succ_n, then
 \[F(\succ_1, \ldots, \succ_n) = a \]
- **Not dictatorial**: For each agent i, $\exists \succ_1, \ldots, \succ_n$:
 \[F(\succ_1, \ldots, \succ_n) \neq \text{agent's } i \text{ top alternative} \]
Social Choice

Setting

- Set A of possible alternatives (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent i has a (private) linear order $\succ_i \in L$ over alternatives A.

Social choice function (or mechanism) $F : L^n \rightarrow A$ mapping the agents’ preferences to an alternative.

Desirable Properties of Social Choice Functions

- **Onto**: Range is A.
- **Unanimous**: If a is the top alternative in all \succ_1, \ldots, \succ_n, then $F(\succ_1, \ldots, \succ_n) = a$
- **Not dictatorial**: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1, \ldots, \succ_n) \neq$ agent’s i top alternative
- **Strategyproof or truthful**: $\forall \succ_1, \ldots, \succ_n, \forall$ agent i, $\forall \succ'_i$,

 $F(\succ_1, \ldots, \succ_i, \ldots, \succ_n) \succ_i F(\succ_1, \ldots, \succ'_i, \ldots, \succ_n)$
Gibbard-Satterthwaite Theorem (mid 70’s)

Any strategyproof and onto social choice function on more than 2 alternatives is \textit{dictatorial}.
Gibbard-Satterthwaite Theorem (mid 70’s)

Any \textit{strategyproof} and \textit{onto} social choice function on \textit{more than 2} alternatives is \textit{dictatorial}.

Escape Routes

- Randomization
- Monetary payments
- Voting systems \textit{computationally hard} to manipulate.
Gibbard-Satterthwaite Theorem (mid 70’s)

Any strategyproof and onto social choice function on more than 2 alternatives is dictatorial.

Escape Routes

- Randomization
- Monetary payments
- Voting systems computationally hard to manipulate.
- Restricted domain of preferences – Approximation
Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. \(A = [0, 1] \)
- Each agent \(i \) has a **single peak** \(x_i^* \in A \) such that for all \(a, b \in A \):
 \[
 b < a \leq x_i^* \quad \Rightarrow \quad a \succ_i b \\
 x_i^* \geq a > b \quad \Rightarrow \quad a \succ_i b
 \]
Single Peaked Preferences and Medians

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. $A = [0, 1]$
- Each agent i has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:
 \[
 b < a \leq x_i^* \implies a \succ_i b \\
 x_i^* \geq a > b \implies a \succ_i b
 \]

Median Voter Scheme [Moulin 80], [Sprum 91], [Barb Jackson 94]

A social choice function F on a single peaked preference domain is **strategyproof**, **onto**, and **anonymous** iff there exist $y_1, \ldots, y_{n-1} \in A$ such that for all (x_1^*, \ldots, x_n^*),

$$F(x_1^*, \ldots, x_n^*) = \text{median}(x_1^*, \ldots, x_n^*, y_1, \ldots, y_{n-1})$$
Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent i wants a facility at x_i. Location x_i is agent i’s private information.
Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent i wants a facility at x_i. Location x_i is agent i’s private information.
- Each agent i reports that she wants a facility at y_i. Location y_i may be different from x_i.

![Diagram showing three agents with different wants and reports](image-url)
(Randomized) Mechanism

A social choice function F that maps a location profile $y = (y_1, \ldots, y_n)$ to a (probability distribution over) set(s) of k facilities.
(Randomized) Mechanism

A social choice function F that maps a location profile $y = (y_1, \ldots, y_n)$ to a (probability distribution over) set(s) of k facilities.

Connection Cost

(Expected) distance of agent i’s true location to the nearest facility:

$$\text{cost}[x_i, F(y)] = d(x_i, F(y))$$

[Diagram showing connection cost with distances $a < b < c$.]
Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y:

$$\text{cost}[x_i, F(x)] \leq \text{cost}[x_i, F(y, x_{-i})]$$
Desirable Properties of Mechanisms

Strategyproofness
For any location profile x, agent i, and location y:

$$\text{cost}[x_i, F(x)] \leq \text{cost}[x_i, F(y, x_{-i})]$$

Efficiency

$F(x)$ should optimize (or approximate) a given objective function.

- **Social Cost**: minimize $\sum_{i=1}^{n} \text{cost}[x_i, F(x)]$
- **Maximum Cost**: minimize $\max\{\text{cost}[x_i, F(x)]\}$
Desirable Properties of Mechanisms

Strategyproofness
For any location profile x, agent i, and location y:

$$\text{cost}[x_i, F(x)] \leq \text{cost}[x_i, F(y, x_{-i})]$$

Efficiency
$F(x)$ should optimize (or approximate) a given objective function.

- **Social Cost**: minimize $\sum_{i=1}^{n} \text{cost}[x_i, F(x)]$
- **Maximum Cost**: minimize $\max\{\text{cost}[x_i, F(x)]\}$
- Minimize p-norm of $(\text{cost}[x_1, F(x)], \ldots, \text{cost}[x_n, F(x)])$
The median of (x_1, \ldots, x_n) is strategyproof and optimal.
The median of \((x_1, \ldots, x_n)\) is strategyproof and optimal.
1-Facility Location on the Line

The **median** of \((x_1, \ldots, x_n)\) is **strategyproof** and **optimal**.
1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- **Extended medians** are the **only** strategyproof mechanisms.
- **Optimal** is an extended median, and thus **strategyproof**.
1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof!
1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- **Extended medians** are the only strategyproof mechanisms.
- **Optimal** is an extended median, and thus **strategyproof**.

1-Facility Location in General Metrics

- Any **onto** and **strategyproof** mechanism is a **dictatorship** [SV02]
- The optimal solution is **not strategyproof**!
- Deterministic **dictatorship** has cost $\leq (n - 1)\text{OPT}$.
- Randomized **dictatorship** has cost $\leq 2\text{OPT}$ [Alon FPT 10]
The optimal solution is **not strategyproof**!
The optimal solution is **not strategyproof**!
2-Facility Location on the Line

The optimal solution is not strategyproof!

\[y_1 = -1 - 2\varepsilon \quad x_2 = 0 \quad x_3 = 1 + \varepsilon \]
The optimal solution is **not strategyproof**!

Two Extremes Mechanism [Procacc Tennen 09]

- Facilities at the **leftmost** and at the **rightmost** location:
 \[F(x_1, \ldots, x_n) = (\min\{x_1, \ldots, x_n\}, \max\{x_1, \ldots, x_n\}) \]
- **Strategyproof** and \((n - 2)\)-approximate.
Approximate Mechanism Design Design [Procacc Tennen 09]

- Sacrifice **optimality** for **strategyproofness**.
- **Best approximation** ratio by **strategyproof** mechanisms?
- Variants of k-Facility Location, $k = 1, 2, \ldots$, among the **central** problems in this research agenda.
Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice **optimality** for **strategyproofness**.
- **Best approximation** ratio by **strategyproof** mechanisms?
- Variants of k-Facility Location, $k = 1, 2, \ldots$, among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>$n - 2$ [PT09]</td>
<td>$(n - 1)/2$ [LSWZ 10]</td>
</tr>
</tbody>
</table>
Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice **optimality** for **strategyproofness**.
- **Best approximation** ratio by **strategyproof** mechanisms?
- Variants of k-Facility Location, $k = 1, 2, \ldots$, among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

<table>
<thead>
<tr>
<th></th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>$n - 2$ [PT09]</td>
<td>$(n - 1)/2$ [LSWZ 10]</td>
</tr>
<tr>
<td>Randomized</td>
<td>4 [LSWZ10]</td>
<td>1.045 [LWZ09]</td>
</tr>
</tbody>
</table>
Deterministic 2-Facility Location on the Line

Nice mechanisms ≡ deterministic **strategyproof** mechanisms with a **bounded approximation** (function of n and k).

Niceness **objective-independent** and **facilitates** the characterization!
Deterministic 2-Facility Location on the Line

Nice mechanisms \equiv deterministic **strategyproof** mechanisms with a **bounded approximation** (function of n and k).

Niceness **objective-independent** and **facilitates** the characterization!

Any **nice** mechanism F for $n \geq 5$ agents:

- Either $F(x) = (\min x, \max x)$ for all x (Two Extremes).
- Or admits unique **dictator** j, i.e., $x_j \in F(x)$ for all x.

Dictatorial Mechanism with Dictator j

Consider distances $d_l = x_j - \min x$ and $d_r = \max x - x_j$.

Place the first facility at x_j and the second at $x_j - \max\{d_l, 2d_r\}$, if $d_l > d_r$, and at $x_j + \max\{2d_l, d_r\}$, otherwise.

Strategyproof and $(n - 1)$-approximate.
Deterministic 2-Facility Location on the Line

Nice mechanisms ≡ deterministic strategyproof mechanisms with a bounded approximation (function of \(n \) and \(k \)).

Niceness objective-independent and facilitates the characterization!

Any nice mechanism \(F \) for \(n \geq 5 \) agents:

- Either \(F(x) = (\min x, \max x) \) for all \(x \) (Two Extremes).
- Or admits unique dictator \(j \), i.e., \(x_j \in F(x) \) for all \(x \).

Dictatorial Mechanism with Dictator \(j \)

- Consider distances \(d_l = x_j - \min x \) and \(d_r = \max x - x_j \).
- Place the first facility at \(x_j \) and the second at \(x_j - \max\{d_l, 2d_r\} \), if \(d_l > d_r \), and at \(x_j + \max\{2d_l, d_r\} \), otherwise.
- Strategyproof and \((n - 1)\)-approximate.
Two Extremes is the only anonymous nice mechanism for allocating 2 facilities to \(n \geq 5 \) agents on the line.

The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is \(n - 2 \).
Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to \(n \geq 5 \) agents on the line.
- The **approximation ratio** for 2-Facility Location on the line by deterministic strategyproof mechanisms is \(n - 2 \).

Deterministic \(k \)-Facility Location, for all \(k \geq 3 \)

There are **no anonymous nice** mechanisms for \(k \)-Facility Location for all \(k \geq 3 \) (even on the line and for \(n = k + 1 \)).
Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to \(n \geq 5 \) agents on the line.
- The **approximation ratio** for 2-Facility Location on the line by deterministic strategyproof mechanisms is \(n - 2 \).

Deterministic \(k \)-Facility Location, for all \(k \geq 3 \)

There are **no anonymous nice** mechanisms for \(k \)-Facility Location for all \(k \geq 3 \) (even on the line and for \(n = k + 1 \)).

Deterministic 2-Facility Location in General Metrics

There are **no nice** mechanisms for 2-Facility Location in metrics more general than the line and the cycle (even for 3 agents in a **star**).
Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent i is selected with probability $1/n$

2nd Round: Agent j is selected with probability $\frac{d(x_j, x_i)}{\sum_{\ell \in N} d(x_{\ell}, x_i)}$
Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent i is selected with probability $1/n$.

2nd Round: Agent j is selected with probability $\frac{d(x_j, x_i)}{\sum_{\ell \in N} d(x_\ell, x_i)}$.

Strategyproof and 4-approximate for general metrics.

Not strategyproof for >2 facilities!

Profile $(0: \text{many}, 1: 50, 1: 50, 5: 4, 101: 101, 5: 1, 1: 1 + 105, 5: 1, 1 + 105)$.

Dimitris Fotakis

Approximate Mechanism Design without Money
Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent i is selected with probability $\frac{1}{n}$

2nd Round: Agent j is selected with probability $\frac{d(x_j, x_i)}{\sum_{\ell \in N} d(x_\ell, x_i)}$

- Strategyproof and 4-approximate for general metrics.
Randomized 2-Facility Location

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent i is selected with probability $1/n$

2nd Round: Agent j is selected with probability $\frac{d(x_i, x_j)}{\sum_{\ell \in N} d(x_\ell, x_i)}$

- **Strategyproof** and 4-approximate for general metrics.
- **Not strategyproof** for > 2 facilities!
 Profile $(0: \text{many}, 1: 50, 1 + 10^5: 4, 101 + 10^5: 1), 1 \to 1 + 10^5$.

Dimitris Fotakis
Approximate Mechanism Design without Money
Randomized k-Facility Location for $k \geq 3$ [F. Tzamos 10]

Winner-Imposing Mechanisms

- Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.

connection cost = a \hspace{1cm} (a < b < c)
Winner-Imposing Mechanisms

- Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.
- Winner-imposing version of the Proportional Mechanism is strategyproof and $4k$-approximate in general metrics, for any k.

\[
\begin{align*}
\text{connection cost} &= a \\
&\quad (a < b < c) \\
\end{align*}
\]

\[
\begin{align*}
\text{connection cost} &= c \\
&\quad (a < b < c) \\
\end{align*}
\]
Equal-Cost Mechanism

- **Optimal maximum** cost $\text{OPT} = C/2$.
- **Cover** all agents with k disjoint intervals of length C.

Diagram:

- Agents located at $x_1, x_2, x_3, x_4, \ldots, x_i, \ldots, x_{n-1}, x_n$ with length C.
Equal-Cost Mechanism

- **Optimal maximum** cost $\text{OPT} = C/2$.
- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an **end** of each interval.

 With prob. $1/2$, facility at $L - R - L - R - \ldots$

 With prob. $1/2$, facility at $R - L - R - L - \ldots$

Agents' Cost and Approximation Ratio

Agent i has expected cost $\frac{C - x_i}{2} + \frac{x_i}{2} = \frac{C}{2} = \text{OPT}$.

Approx. ratio: 2 for the maximum cost, n for the social cost.
Randomized k-Facility Location on the Line

Equal-Cost Mechanism

- **Optimal maximum** cost $OPT = C/2$.
- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an **end** of each interval.
 - With prob. $1/2$, facility at $L - R - L - R - \ldots$.
 - With prob. $1/2$, facility at $R - L - R - L - \ldots$.

Agents’ Cost and Approximation Ratio

- Agent i has expected cost $\text{cost} = (C - x_i)/2 + x_i/2 = C/2 = OPT$.

$x_1 \ x_2 \ x_3 \ x_4 \ \ldots \ \ldots \ x_i \ \ldots \ x_{n-1} \ x_n$
Randomized k-Facility Location on the Line

Equal-Cost Mechanism
- **Optimal maximum** cost $\text{OPT} = C/2$.
- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an **end** of each interval.
 - With prob. $1/2$, facility at $L - R - L - R - \ldots$
 - With prob. $1/2$, facility at $R - L - R - L - \ldots$

Agents’ Cost and Approximation Ratio
- Agent i has expected cost $\text{cost} = (C - x_i)/2 + x_i/2 = C/2 = \text{OPT}$.
- Approx. ratio: 2 for the **maximum** cost, n for the **social** cost.
Randomized k-Facility Location on the Line

Equal-Cost Mechanism

- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent i declare y_i and decrease OPT to $C'/2 < C/2$.

![Diagram of equal-cost mechanism with intervals and facilities](image-url)
Equal-Cost Mechanism

- **Cover** all agents with *k disjoint intervals* of length \(C \).
- Place a facility to an **end** of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent \(i \) declare \(y_i \) and decrease OPT to \(C'/2 < C/2 \).
- Distance of \(x_i \) to nearest \(C' \)-interval \(\geq C - C' \).
Equal-Cost Mechanism

- **Cover** all agents with \(k \) disjoint intervals of length \(C \).
- Place a facility to an **end** of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent \(i \) declare \(y_i \) and **decrease** OPT to \(C'/2 < C/2 \).
- Distance of \(x_i \) to **nearest** \(C'\)-interval \(\geq C - C' \).
- \(i \)'s expected cost \(\geq (C - C')/2 + C/2 = C - C'/2 > C/2 \)
Randomized k-Facility Location on the Line [F. Tzamos 13]

Equal-Cost Mechanism

- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an **end** of each interval.

Agents with Concave Costs

Generalized Equal-Cost Mechanism is **strategyproof** and has the **same approximation** ratio if agents’ cost is a **concave function** of distance to the nearest facility.
Understanding the Power of Verification

- (Implicit or explicit) **verification** restricts agents’ declarations.
Understanding the Power of Verification

- (Implicit or explicit) **verification** restricts agents’ declarations.
 - **ε-verification**: agent i at x_i can **only** declare anything in $[x_i - \varepsilon, x_i + \varepsilon]$.
 - **Winner-imposing**: lies that increase mechanism’s cost cause a (proportional) **penalty** to the agent [F. Tzamos 10] [Koutsoupias 11]
Understanding the Power of Verification

- (Implicit or explicit) **verification** restricts agents’ declarations.
 - **ε-verification** : agent i at x_i can **only** declare anything in $[x_i - \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - **Winner-imposing** : lies that increase mechanism’s cost cause a (proportional) **penalty** to the agent [Tzamos 10] [Koutsoupias 11]

- **Non-symmetric** verification: **conditions** under which the mechanism gets some **advantage**.
Research Directions

Understanding the Power of Verification

- (Implicit or explicit) verification restricts agents’ declarations.
 - \(\varepsilon\)-verification: agent \(i\) at \(x_i\) can only declare anything in \([x_i - \varepsilon, x_i + \varepsilon]\), [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism’s cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]

- Non-symmetric verification: conditions under which the mechanism gets some advantage.

Voting and Social Networks

- How group of people vote for their leader in social networks?
- How social network affects the people’s votes and the outcome? Relation to opinion dynamics?
Thank You!